

Linking fish species through common traits to optimize stream monitoring protocols

Robert Mollenhauer¹ and Shannon Brewer²

¹Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University ²U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University

Problem Statement

- ➤ Extinction of freshwater fishes 800 times higher than historical rates (Burkhead 2012)
- ➤ Biological condition of U.S. streams declining (EPA 2013)
- ➤ Altered flow regimes threaten stream fishes worldwide (Xenopoulos et al. 2005)

"Reactive" vs "Predictive" management

1. What factors are driving declines?

2. How will species respond to changes in environmental conditions?

3. Unknown population status?

- Trait-based approach
 - Frimpong and Angermeier 2010;
 Verberk et al. 2013
 - Species evolve <u>suites of traits</u> to maximize fitness

versus

Modified from Verberk et al. 2013; Figure 1

Traits

- Tall
- Long wingspan
- Strong
- Fast
- Can jump high
- Efficient use of 0₂
- Competitive
- Disciplined

Combination of traits

Desert streams

desert pupfish
Cyprinodon macularius

8 cm → Sexually mature at 6 weeks

Tolerate 4°- 45°C Tolerate high salinities

Ozark Highlands

Spring-fed, warmwater streams

Species of conservation concern

Photo credit: Brandon Brown

Project objectives

- 1. Construct trait groups of Ozark stream fishes based on morphology and behavior
- 2. Develop standardized stream-fish sampling protocols and establish conservation status

3. Understand how trait combinations explain the population dynamics of Ozark fishes across a flow-regime gradient

(1) Construct ecomorphological groups

- Groups that make sense ecologically
 - Use morphology to capture behavioral element
- > Ecomorphological traits (Gatz 1979)
 - Head depth and length, body depth and width, trunk length, caudal peduncle depth, width, and length, snout length, fin characteristics
- > Hierarchical clustering with bootstrapping
 - pvclust (R package) assess group uncertainty

(2) Capture-efficiency model

- > Adjusted vs. unadjusted fish-sampling data (CPUE)
- > CPUE data unreliable for detecting population trends
 - Environmental variation affects capture efficiency
 - Change in fish population or change in sampling conditions?
- > Sampling-gear bias different for different fish species
 - Unadjusted data may misrepresent assemblage structure
 - Example: 20 of species 1 (capture efficiency of 0.2) = $\frac{100}{80}$ 40 of species 2 (capture efficiency of 0.5) = $\frac{80}{100}$

➤ Same morphology/behavior = Same capture efficiency

(Peterson and Paukert 2009; Rabeni et al. 2009)

(2) Capture-efficiency model

- ➤ Calibrate sampling gear across range of environmental sampling conditions
- **➤**The model (equation)
 - Capture efficiency = conductivity + discharge + turbidity +

Develop model in Illinois River watershed and test its applicability across the Ozark Highlands

(3) Link trait combinations to flow regime

- Classification of flow regime
 - 1. Flow regime type (reference conditions)
 - 2. Level of alteration
 - Indicators of Hydrologic Alteration (IHA)
 (Richter et al. 1996, 1997)

Assessment of Environmental Flows for Oklahoma

(3) Link trait combinations to flow regime

- > Classification of flow regime
 - 1. Flow regime type (reference conditions)
 - 2. Level of alteration
 - Indicators of Hydrologic Alteration method (IHA)
 (Richter et al. 1996, 1997)
- Which traits drive adaptations to flow regime?
 - e.g., How do reproductive strategies relate to differences in abundance of a similar group of fish species?

Benthic group

(3) Link trait combinations to flow regime

- Develop predictive models
 - Simulate changes in Ozark stream-fish assemblages under climate-change scenarios
 - How will climate change alter future flow-regimes?
- ➤ What stream fishes should we be worried about?

Summary

- Trait-based approach useful for improving stream-fish monitoring
 - Population status and predictive management
- Understand trait combinations
- ➤ Clustering to develop ecomorphological groups an effective starting point
- > To be continued...

Acknowledgements

- Oklahoma Department of Wildlife Conservation
 - Brandon Brown, Jim Burroughs
- Techs
 - Josh Mouser, Jake Holliday, Brandon Melton,
 Dakota McNeil, Dawson McNeil, Chris Brown
- Dr. Jim Peterson, Dr. Dan Storm, Dr. Mike Palmer
- Oklahoma State University